

International Journal of Intelligent Information Systems
2014; 3(6-1): 33-37

Published online October 20, 2014 (http://www.sciencepublishinggroup.com/j/ijiis)

doi: 10.11648/j.ijiis.s.2014030601.16

ISSN: 2328-7675 (Print); ISSN: 2328-7683 (Online)

Malware detection using data mining techniques

Sara Najari, Iman Lotfi

Computer Department, Payam Noor University, Tehran, Iran

Email address:
Najari.sara@yahoo.com (S. Najari), Lotfi_iman@yahoo.com(I. Lotfi)

To cite this article:
Sara Najari, Iman Lotfi. Malware Detection Using Data Mining Techniques. International Journal of Intelligent Information Systems. Special

Issue: Research and Practices in Information Systems and Technologies in Developing Countries. Vol. 3, No. 6-1, 2014, pp. 33-37.

doi: 10.11648/j.ijiis.s.2014030601.16

Abstract: Nowadays, malicious software attacks and threats against data and information security has become a complex

process. The variety and number of these attacks and threats has resulted in providing various type of defending ways against

them, but unfortunately current detection technologies are ineffective to cope with new techniques of malware designers which

use them to escape from anti-malwares. In current research, we present a combination of static and dynamic methods to

accelerate and improve malware detection process and to enable malware detection systems to detect malware with high

precision, in less time and help network security experts to react well since time detection of security threats has a high

importance in dealing with attacks.

Keywords: Malware, Malware Detection, Escape Techniques, Data Mining

1. Introduction

The Continues growth of malwares, has resulted in creating

enormous threats in information and security points so that

cyber defense centers have high importance in many countries.

Like country boundaries which could be attacked from

different aspects such as contraband and thieves, virtual space

also suffer from these attacks [1].

Figure 1. Ncreased volume of malware from 2003 to 2010.

Experiences have shown that most of these attacks are from

malwares. On time detection of virtual space security attacks

has a significant importance in protecting resources. In order

to detect such malwares, before the advent of malicious effects,

we should employ methods for detecting good and bad

software behaviors to be able to detect which software is

problematic and which ones are not. For this means, we should

investigate both type of software in order to not face with a

problem in detection process [2].

Figure 1 indicates increased volume of malware from 2003 to

2010 which has reported by Panda laboratory and it is predicted

that this increasing trend of attack would continue in the next

few years with a much faster speed so that the mean number of

new threats per day exceeds from 55000 attacks per day. These

attack are usually done to computer networks of sensitive

agencies such as security entities, banks, economic centers,

information storage centers, computer networks and etc.

2. Malware Definition and Analysis

Computer applications which have a destructive content

and apply to system from invader, are called malware and the

systems which apply on it is called victim system [3]. The

malware word is assigned to virus, worm, Trojan and any

other program which is created for distractive goals and

abusing of users’ privacy.

But what is the difference between a virus and a worm?

What is the difference between these two and Trojan? Do

antivirus programs apply against worms and Trojans or only

34 Sara Najari and Iman Lotfi: Malware Detection Using Data Mining Techniques

against the viruses? All of these questions originate from one

source and it’s the complex and complicated world of

destructive codes [1].

Enormous numbers of available destructive codes have

made their classification difficult. Generally, malwares are

classified into several kind based on behavior, attack method:

For example, some kind of malware classification is as

follow: virus, worm, spyware, rootkit, each one has a special

behavior which are described below:

2.1. Virus

A code which includes itself to other programs such as

operating systems and needs to run within the host program [4].

2.2. Worm

Malwares which transform themselves from one system to

other using self-publishing in a network which include some

connected computers. Generally, viruses try to publish

themselves via a program, while worms unlike viruses put

themselves only in one computer, and try to pollute a

computer network [1].

2.3. Trojan Horse

A type of malware that appears in the form of pieces of

software code and are intended for useful purposes. It runs up

desired functions for users but hiddenly runs a series of

actions beside it. It even can destroy the integration of a

system [3].

2.4. Logic Bomb

A Logic bomb does not publish itself, but is installed on a

system and waits until an external event such as data input,

reaches to a special date, creating, deleting or even modify a

special file leading to damaging the system [2].

2.5. Backdoors

Backdoor is a kind of software which enters the computer

system without authorization and achieves its goals without

normal entering to system [1].

2.6. Spy

A term for a collection of software that collects user

personal information such as most visited pages, email

addresses, keys pressed by the user [5].

2.7. Rootkit

Rootkit is a malware that has the ability to hide itself and

its activities on the target system. Owner of rootkit is capable

to run file and settings on the victim system without the

owner of system being aware of it. It usually attaches itself to

original files of operating system core and run with it.

Rootkits try targeting original structures and programs of

the operating system and the integrity of their contents in

order to change performance trend and the result of their

running. Rootkits can hide themselves from users through the

following methods:

a) Rootkit integrate its codes with operating system codes

which are at low-levels and accordingly can access all

system requests such as reading files, running processes

and etc.

b) Rootkit transfers its malicious codes into healthy

processes and by doing so, it can use the memory that

and do its malicious programs [6].

The base of traditional and usual methods to detect

malware is using signature in which part of malware code is

hold as the signature in the database and malware detection is

carried out using signatures available in the database. Due to

the failure of old methods in detecting new and unrecognized

malwares or polymorphic malwares in recent years,

researchers have tried to present more reliable methods for

malware detection using unchanging characteristics of the

malwares [6].

Nowadays, signature for antiviruses is a tool which is

created manually. Before writing a signature, the analyst

should identify how to deal with the unknown sample as a

threat for users.

The process of searching malware is called analyzing. The

more analysis tool and techniques, the more attackers try in

using hidden making techniques and generating dynamic

hidden codes from user’s perspective. Analysts use two type

of analysis to detect malware: static analysis and Dynamic

analysis.

2.8. Static Analysis

Software analysis without execution, is called static

analysis which without running the program, investigates the

code and can detect malicious code and put it in one of the

available groups based on different learning methods [7].

Since such methods deal with real codes, they can be used

in the conditions in which there are polymorphic malwares.

One of the problems of static analysis is that source code of

the program isn’t usually available which this reduces using

of static analysis techniques that results in analyzing their

binary codes which in turn is very complicated.

In the static method, binary codes are checked and viruses

are detected based on binary codes. In fact this is the key part

of static method. It is worth mentioning that extracting binary

codes is a relatively complex work [5].

3. Dynamic Analysis

To overcome these shortcomings, several dynamic

detection methods have been proposed. Unlike the static

method which relies on malware binary codes, there is a

completely different method without using the codes but

according to the runtime behavior [3].

Although promising, but unfortunately this method is too

slow as real time detectors on the end host and often need

virtual machine technology [1]. In fact, program analyzing,

while it is running, is called dynamic analysis which also

referred to as behaviors analyzing and include software

running and watching its behavior, system interaction and its

International Journal of Intelligent Information Systems 2014; 3(6-1): 33-37 35

effects on host system [6]. Dynamic analysis method need to

run polluted files in a virtual environment like a virtual

machine, a simulator, sand box, etc to analyze it in virtual

environment [2].

To analyze programs by dynamic methods, different

techniques have been applied.

So far which the most common method and techniques

include [8]:

� Checking recalled functions.

� Following the flow of information.

� Following the order of running functions.

4. Malware Detection Techniques

There are different methods to detect malwares but

considering that malware have become more complicated

using hidden techniques; we need more advanced methods to

detect them.

Generally, common malware detection techniques are

divided into two categories:

� Detection methods based on signature

� Detection methods based on behavior

4.1. Signature- Based Detection

The main goal of this method is to extract the unique bytes

sequence of codes as the signature. Searching for a signature

in the suspicious files is a part of the task [8].

Most of today’s commercial anti-malwares use a set of

signatures to detect malicious programs which these

suspicious codes are compared with a unique sequence of

structures of programs or bytes [7].

If the signature is not available in the dataset, it means that

the file is begin other than malicious [9].

The main problem of such approaches is that the

anti-malwares experts should wait until new malware harm

several computers, order to define a signature for it [8].

Usage of polymorphic model in cryptography has led to

neutralize the signature based method which makes these

polymorphic malwares undetectable through this method.

In order to overcome these problems, the behavior based

method is used.

4.2. Behavior-Based Detection

Behavioral parameters include many factors such as source

or destination of malware, kinds of attachments and other

statistical properties [8]. Dynamic behaviors are directly used

in evaluating the damage to the system and also help us to

detect and classify new malwares. Malware clustering based

on dynamic analysis is based on running the malware in a

real controlled environment [7].

4.3. Comparison between Detection Methods

Given the polymorphism and transformation techniques

which currently are used by malware designers, the signature

based methods are inherently prone to errors [9].

Signature based methods are unable to detect more

complex malwares and can hardly detect malwares which use

polymorphism and transformation methods. In addition, one

of the limitations of signature-based detection methods is that

they require human knowledge to update the signature

database by new signatures [8].

Furthermore, a number of research studies have shown that

some of polymorphic software’s writers can easily defeat

signature based method by obfuscation methods [9].

Given the mentioned problems, it is better to use analysis

method at runtime. However, the behavior based methods

also have a major problem since this method is to slow as the

real-time detectors on the final host and they often need

virtual machine technologies.

5. Methods used for Escaping from Anti

Malwares

Since signature-based antivirus systems try to find viral

codes by searching for a character sequence string in the

executive file, virus programmers apply various techniques to

hide malwares and such sequences some of which are

described below.

5.1. Cryptography

Virus code encryption by different encryption key would

result in creating different texts.

As a result, it could be ensured that signature based

scanners can’t detect this virus. To run the virus, these texts

should initially be decoded.

Detailed analysis of decoding algorithm is only possible if

we know these keys [10].

5.2. Polymorphic Generator

Malwares use a polymorphic generator to change codes

while the original algorithm remains intact. However, we

should know that, at the end, all samples generated from a

malware do the same work.

This is performed by combining many commands that

have no impact on the execution mode and its effects. For

example, each copy of the virus may be neutral group of

commands such as increasing and then decreasing over the

same operand or left ship and then right shift or push a value

and pop it again.

All these methods will effectively hide virus codes from

the signature based anti viruses [10].

5.3. Obfuscation

In malwares there are different evasion approaches to evade

the malcodes from external anti malware scanners such as

Code obfuscation, decrypting encryption and etc.

In code obfuscation the main goal is to hide the underlying

logic of the program so as to prevent the others from having

any related knowledge of the code[8].

The malicious code remains incomprehensible and all its

harmful functionality whenever activated. When we apply

36 Sara Najari and Iman Lotfi: Malware Detection Using Data Mining Techniques

some obfuscation transformations to a code, then it results in a

kind of self-decrypting encryption.

But Packing refers to encrypt or compress the executable

file. In Packing, original code remains hidden till the runtime

or the unpacking process of executable codes which results in

the immunity of code for static analysis [7].

Packed malware codes can be treated as subset of

obfuscated codes which are compressed and cannot be

analyzed so, consequently unpacking phase is necessary to

reveal the overall semantic of the code [9].

6. Problem Definition

One the most important and most serious problems which

the internet world is faced with is the existence of malwares

like.

According to studies conducted in this field, we have

concluded that 80 percent of damages to systems have been

from malwares and only 20 percent of it has been from other

factors [9].

However, unfortunately, most of the works has been on the

20% and the malwares have received less attention and thus

we're facing many security problems every day [5].

In the early days of virus emergence, there were only static

and simple viruses in the world [3].

Therefore, simple signature based methods were able to

overcome them. But these methods were only useful as long

as there weren't so many variations in the types of malwares

and malwares writers didn't use obfuscation techniques to

sophisticate them [5].

However, rapid developments in malwares activities

convinced researchers to explore new methods, so that after

some time, researchers were forced to use data-mining

methods to detect malwares by employing data mining, they

could add a lot of malware to anti-malware and hence they

didn't have to investigate all malwares, because checking all

of them require enormous time and cost [2].

One of such works was a method called n-grams. At that

time, Geraldn et al. [3] developed n-grams analysis method

to detect boot sector viruses using neural networks.

The base of n-grams detection method was the occurrence

frequencies in the benign and malicious programs [3].

After that, Hofmeyr [10] used a simple sequence of system

calls as a guide to evaluate malicious codes. This API CALLs

sequence showed the hidden dependencies between code

sequences.

Thereafter, Shultz, al. [7] tried to use the name of DLLs as

a useful feature in the file categorization. However, in the

recent work by Ye [7], a system (IMDS) was generated in

which the system calls pattern has been used. Then data

mining process has been applied on these patterns. The study

includes 12214 healthy files and 17366 malicious files which

they have only used 200 files to test the system [7].

Although the accuracy and learning rate of this method is

relatively good, but there is a fundamental problem that is

Unbalancing of the test data versus the balancing of learning

data.

What we do in this study consists of a very large data set

which involve various types of bengin and malicious

softwares which generally, the number of extracted calls is

about 5000 different features of 420 different files from 890

libraries which includes different types of malwares such as

Trojan, Backdoor, Worm, Exploit, Flooder, Sniffer, Spoofer

and viruses.

7. Research Methodology

This research has been performed by some basic steps:

� data collection

� data processing

� analysis of results

In the following, we will discuss each of these steps.

7.1. Data Collection

In order to collect data related to malwares. We examine

the Anubis database [11].

Each sample of this set provides us its executive’s code.

These codes are used to learn the proposed model. In order to

evaluate and test, a set of 3131 collected malware were tested

which more than 90% of them include rootkits.

We selected this malwares set because in this study, our

goal is detection rates of malwares especially rootkits.

7.2. Data Processing and Preparation

In this section, we deal with data processing using 3

reverse engineering tools namely: HDasm [12], Ida pro [13]

and W32dsm89 [14] as well as Peid anti-packing tool [15].

First we process the Peid tool (which is the malware

executive file) but with the understanding that the file has

been packed by Packing tool. Otherwise, there is no need to

apply this tool on it.

In fact by unpacking task, the packing task will be

removed if it has been applied on it because otherwise, the

file isn’t executable by reverse engineering tool and thus we

can't see the called system functions in it.

Afterwards, we give the file as input to three

above-mentioned disassembler and they get the assembly

code of these fields and return the called system functions list

from these assembly codes. Then we save the list as an Xml

file. Later, we apply our algorithm on this stored file to detect

whether it is a malware or not and finally we obtain our

success rate in detecting malwares using Weka data-minig

tool.

7.3. Analysis of Results

Malwares of the same category usually have the

samegeneral patterns, for example a number of system

functions names are common in all members of this family.

We aim to analyze and detect malwares by examining the

shared pattern using machine learning techniques among

malwares.

In fact, we want to use so called Api calls in malware to

overcome the limitations of traditional signature based

International Journal of Intelligent Information Systems 2014; 3(6-1): 33-37 37

methods and to cope with techniques used by malwares

writers as well as to increase malware detection rate.

This method, which is based on called system functions in

malware executive code, uses reverse engineering tool and

monitoring tool for static and dynamic analysis, respectively.

This means, that we obtain their assembly code by

disassembling them and then extract called system function

in it and obtain the API CALLs list of malware executive file

by monitoring the file using monitoring tool.

Finally, with respect to the shared sequence of maleware

which is common among them and could be used to detect

and identify them as the signature, we deal with the detection

of malwares.

The advantages of this method include its high success rate

in malwares detection because it is directly in contact with

malware binary codes and also there is no need to run them

and we can understand whether it is a malware or not only

using their code and obtaining the shared sequence of called

system functions.

Furthermore, we apply the prepared algorithm on the log

file of each file to obtain our database.

After that, we transform the information of this database to

a data mining tool (here we used Weka tool) to obtain the

success rate of detection task. Figure 2 shows a graph of data

mining operation results using Weka tool on database. As

shown above, the success rate of this method in rootkit

detection is over than 97% which is a remarkable rate.

Figure 2. Success rate of our method in rootkit detection.

8. Discussion and Conclusion

Malwares are becoming widespread and more complex

every day. As examples of their complexity, we can note the

need of using polymorphism techniques, transformation and

encryption, The traditional methods such as matching some

code string of malwares signatures do not have enough

efficiency.

However, there are also some problems in dynamic

methods which their slowness is the most important one.

This is why we need a more intelligent detection method.

This type of detection (which is based on static method) is

based on called system functions in each executive code of

the malware and its goal is to detect versions of malware

which haven't seen yet or are a new version of old malware

families.

References

[1] Ravi, C & Manoharan, R. Malware Detection using Windows
Api Sequence and Machine Learning. International Journal of
Computer Application, Vol.43, No.17, 2012.

[2] Ravi, C & Chetia, G. Malware Threats And Mitigation
Strategies: A Survey, Journal of Theoretical and Applied
Information Technology, Vol. 29, No. 2, pp. 69-73, 2011.

[3] Egele, M. S, A Survey on Automated Dynamic
Malware-Analysis. ACM Computing Surveys, Vol. 44, No. 2,
2012.

[4] Herath, H. M. P. S., & Wijayanayake, W. M. J. I. Computer
Misuse in the Workplace. Journal of Business Continuity &
Emergency Planning, Vol.3, No.3, P.P 259–270, 2009.

[5] Mathur, K., and Saroj H. A Survey on Techniques in Detection
and Analyzing Malware Executables. International Journal of
Advanced Research in Computer Science and Software
Engineering, Vol. 44, No. 2, 2012.

[6] Doherty, N. F., Anastasakis, L., & Fulford, H, The Information
Security Policy Unpacked: A Critical Study of the Content of
University Policies. International Journal of Information
Management, Vol.29, No.6, pp. 449–457, 2009.

[7] G. Tahan, L.R.Y. Automatic Malware Detection Using
Common Segment Analysis and Meta-Features. Journal of
Machine Learning Research, 13l, pp. 949-979, 2012.

[8] I. Gurrutxaga , Evaluation of Malware clustering based on its
dynamic behaviour. Seventh Australasian Data Mining
conference, Australia, pp. 163–170, 2008.

[9] Rieck. K, Willems.T, D¨ussel. P and Laskov. p, Learning and
classification of malware behavior, 5th international conference
on Detection of Intrusions and Malware, and Vulnerability
Assessment. Berlin, Heidelberg: Springer-Verlag, pp. 108–125,
2008.

[10] Patel, S. C., Graham, J. H., & Ralston, P. A, Qualitatively
Assessing the Vulnerability of Critical Information Systems: A
New Method for Evaluating Security Eenhancements.
International Journal of Information Management, Vol.28, pp.
483–491, 2008.

[11] http:// www.anubis.org

[12] http://hdasm.software.informer.com

[13] www.hex-rays.com

[14] processchecker.com/file/W32dsm89.exe.html

[15] https://boveda.banamex.com.mx/englishdir/ayudas/masinfoah
nlab.htm

