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Abstract: A well-known family of logics for managing structured knowledge is Description logics (DLs). They form the 

basis for a wide variety of ontology languages. Experience with the use of DLs in applications has, however, shown that their 

capabilities are insufficient for some domains. In particular, the decision-making process requires the assessment of two, 

possibly contradictory, influences on decision factors. First, there are items belonging to certain classes or fulfillling certain 

roles within complex logical constructs, but these memberships are to some extent vague. Secondly, individual preferences 

may change depending on the person who controls the decision-making process. Therefore, the challenge in building a 

decision making framework is to appropriately account for these variable influences by depicting and incorporating both 

aspects. This paper shows how these influences can be best modeled using a combination of fuzzy description logic and 

weighted description logic. Fuzzy logic is used to represent vagueness and ambiguity in ontologies, weighted description logic 

expresses individual preferences. In addition, the paper shows how to engineer an appropriate architecture for the suggested 

model. 
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1. Introduction 

Many decision-making processes require expert 

knowledge. Human experts can identify structural patterns of 

decision situations in order to model decision processes [1]. 

Cognitive-psychologically, decision making requires 

heuristics that ignore some of information in order to make 

decisions faster, more economical or more accurate. The 

ability to work with vague information is crucial in dealing 

with systems that are described by complex ontologies and 

consist of many instances [2]. Decision making and 

argumentation interact between processes that use logical 

thinking or heuristic reasoning. Therefore, one can argue that 

intuitive processes allow access to some form of logical 

reasoning. But it is also possible, that logic and rationality 

can be conceived as domains of explicit high-level forms of 

processing. 

Description logics (DLs) offer a powerful tool to formally 

structure knowledge and support reasoning. When making 

decisions, it is often necessary to take both a set of formally 

structured requirements and individual preferences 

simultaneously into account. This requires an extension of 

the common knowledge bases, the so-called decision bases, 

which are initially based on the multi-attribute utility theory 

(MAUT) [3]. Since then, various approaches like the 

application of logic to decision and utility theoretical 

problems have emerged [4-6]. A common approach is to 

augment the framework with fuzzy logic as soon as 

ambiguity occurs [7, 8]. However, in cases where individual 

preferences encounter vague knowledge and assertions, 

neither decision bases nor fuzzy description logic alone can 

satisfy the paradigms. To close the gap, this paper provides a 

framework to model ambiguity and individual preferences at 

the same time. It combines the fuzzy description logic with 

the weighted description logic. To ease understanding, we 

first introduce the architecture used in this specific context. 

Then, to get a fine grasp of the combined framework of 

weighted description logic and fuzzy description logic, we 

will familiarize the reader with both separately. Initially, we 

establish the basics of the weighted description logic. We 

subsequently present the fuzzy description logic and focus on 

how it supports the modeling of ambiguous and vague 
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knowledge. At the same time, the demarcation to 

probabilistic settings is highlighted. After combining these 

two approaches, the fuzzy decision base framework is 

introduced. Finally, we show how this framework can 

support the decision-making process within the respective 

architecture. 

2. Preliminaries 

The following sections present our architecture for opinion 

and consensus mining OMA, classical description logic and 

two extensions, the weighted description logic and fuzzy 

description logic. 

2.1. Opinion & Consensus Mining Architecture OMA 

The original Opinion Mining Architecture (OMA) is part 

of a project of the same name. OMA was used for the first 

time for sentiment analysis of tweets for the financial sector 

[9]. In order to obtain an automated calculation of sentiment 

scores from texts, traditional approaches of natural language 

processing (such as POS tagging, parsing) and machine 

learning from texts (such as n-gram, syntactic/semantic 

features) were used for the pre-processing of the texts [10]. 

In addition, an extension of the description logic [11], the so-

called weighted description logic [6], was used to 

automatically calculate the sentiment scores. The idea of 

separating the text processing task (filtering out relevant 

phrases) from the decision support task (evaluating extracted 

phrases) comes from the text understanding system 

SYNDIKATE [12] and its qualitative calculus [4]. 

In order to explain the extension of the OMA to include 

consensus mining and decision making, we first describe the 

essential components of the OMA. In Figure 1 we see (from 

top to bottom): 

The ����, which accommodates models of compliances, 

rules, judgements, etc. 

The ���� , which contains unweighted statements about 

the model of the ����. 

������	 (on the right side) containing different preference 

models of experts. 

From a technical point of view, the description logic 

represents the models of the TBox completely through 

terminological concepts, roles and is-a relations. The 

elements of the ABox are terminological assertions that enter 

into an instance-of-relationship with concepts of the TBox. 

At this point it should be noted that these assertions are 

created by the text-processing task from newspapers, social 

media, political programs, etc. (see the cloud on the left in 

Figure 1). The preference model of an expert e� is shown in 

the ����� . A preference model consists of an a priori 

preference relation among attributes of concepts (see black 

circles in Figure 1). Each model represents the individual 

utility function of an expert e�. From these a priori preference 

relations of an expert, a first a posteriori preference order can 

be derived for each expert choice (see the individual 

preference orders in Figure 1). Note that the preference 

model of each expert can be extracted a priori from the text 

processing task or entered directly by each expert. Next, the 

individual preference relations of each expert are used to 

build consensus or, in the case of only one expert, to directly 

retrieve the best possible choice respectively decision. The 

former is done by incomplete fuzzy preference relations for 

group decision making [13], which repeatedly adapts the 

preference relations of all experts until a satisfying consistent 

consensus is achieved. The theoretical basis of this approach 

is the use of an IOWA operator [14], which is also used in 

other combined methods [15]. 

 

Figure 1. The Opinion & Consensus Mining Architecture OMA. 

2.2. Description Logic 

Description logics (DLs) [11] are a family of logic-based 

knowledge representation formalisms. They can be used to 

represent and reason on the knowledge of an application 
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domain. The basis of description logics is a common family 

of languages, known as description languages, that contain a 

set of constructors for ontologies consisting of concept 

(class) and role (property) descriptions.  

A description language consists of an alphabet with unique 

concept names (��), role names (��) and individual (object) 

names (�� ). In addition, so-called constructors are used to 

create concept and role descriptions. Depending on which 

constructors are allowed, there are many different description 

languages. Some of them form the basis for the ontology 

language of the semantic web [16]. 

The SROIQ Description Logic. A rather expressive 

description language is SROIQ-DL [17]. SROIQ-DL is 

compatible with OWL2, the current semantic web standard 

[18], making it the most reasonable description language 

within the above architecture. Below are some examples for 

the formal definition of the notions of SROIQ-roles and 

SROIQ-concepts as well as the underlying model-theoretic 

semantics. The interpretation is written as �, the domain as �� 

and the interpretation function as ∙� [17]: 

Table 1. Example syntax and semantics of SROIQ-DL. 

Constructor Syntax Semantics 

top ⊤ Δℐ 

bottom ⊥ ∅ 

general negation ¬� �ℐ\�ℐ 

conjunction / disjunction � ⊓ " / � ⊔ " �ℐ ∩ "ℐ/ �ℐ ∪ "ℐ  

exists restriction ∃'. � )� ∈ �ℐ| ∃-. .�, -0 ∈ 'ℐ ∧ y ∈ �ℐ} 

value restriction ∀'. � )� ∈ �ℐ| ∀-. .�, -0 ∈ 'ℐ → y ∈ �ℐ} 

at-most restriction ≤ 6' )� ∈ �ℐ| #)- ∈ �ℐ|'ℐ(�, -)} ≤ 6} 

at-least restriction ≥ 6' )� ∈ �ℐ| #)- ∈ �ℐ|'ℐ(�, -)} ≥ 6} 

concept definition / concept specialisation " ≡ � / " ⊑ � "ℐ = �ℐ/ "ℐ ⊆ �ℐ 

 
In DLs, we distinguish between terminological knowledge 

(so-called >Box ) and assertional knowledge (so-called 

?Box). A >Box is a set of concept inclusions � ⊑ "  and 

concept definitions � ≡ " . An ? Box is a set of concept 

assertions @: � as well as role assertions (@, B): '.  

A so-called concrete domain C  is defined as a pair 

(�C, DE�F(C)). �C is the domain of C and pred (C) is the set 

of predicate names of C. The following assumptions were 

made: �ℐ ∩ �C = ∅ and for each G ∈ DE�F(C) with arity n 

there is GC ⊆ (�C)H. Functional roles are denoted by lower-

case letters, for example with E  [11]. In description logics 

with concrete precise domains, �� consists of functional and 

ordinary roles. A role E is functional if for each (�, -) ∈ E 

and (I, J) ∈ E  it applies � = I ⇒ - = J.  Functional roles 

are explained as partial functions of �ℐ to �ℐ  ×  �C. Within 

SROIQ all statements gathered about roles are captured in an 

ℛBox, which is not applied to our examples for reasons of 

clarity and compatibility with the basic description logic 

definitions [11]. 

Next, we extend an existing knowledge base [9] of a domain 

that will be used in the further course of the work. Its purpose 

is pure illustrative, so that reasoning and entailment is obvious. 

We will list explicit and implicit knowledge (“- ik -”):  

> = {"�NOP� ⊑ ⊤, QRSOD ⊑ ⊤, "�NOP� ⊓ QRSOD ⊑ ⊥, G��EQRSOD ⊑ QRSOD, T�UUQRSOD ⊑ QRSOD 

G��EQRSOD ⊓ T�UUQRSOD ⊑ ⊥, "�NOP� ≡ ∃ℎ@	T�OWℎX. >Z[⊓ ∃ℎ@	GEOP�. >Z€⊓ ∀�RSODD�F. QRSOD 

�@BU�X ≡ "�NOP� ⊓ ∃ℎ@	GEOP�. >]ZZ€, �6��D�6	ON��@BU�X ≡ �@BU�X ⊓ ∃ℎ@	GEOP�. ≤^ZZ€ 

Q�D�6	ON��@BU�X ≡ �@BU�X ⊓ ∃ℎ@	GEOP�. ≥_ZZ€, �6��D�6	ON��@BU�X ≡ ¬Q�D�6	ON��@BU�X 

Q�D�6	ON��@BU�X ≡ ¬�6��D�6	ON��@BU�X, `OWℎXT�OWℎX�@BU�X ≡ �@BU�X ⊓ ∃ℎ@	T�OWℎX. ≤_ZZ [ 

��6N�EXOBU� ⊑ �DD�EPU@		�@BU�X, �DD�EPU@		�@BU�X ≡ �@BU�X ⊓ ∀�RSODD�F. T�UUQRSOD 

`�I�EPU@		�@BU�X ≡ �@BU�X ⊓ ∀�RSODD�F. G��EQRSOD 

�DD�EPU@		�@BU�X ⊓ `�I�EPU@		�@BU�X ⊑ ⊥, - ik -} 

? = {X@Ba: �@BU�X, (X@Ba, 999€): ℎ@	GEOP�, (X@Ba, 710g): ℎ@	T�OWℎX 

�RSODg�6Xa: T�UUQRSOD, (X@Ba, �RSODg�6Xa): ∀�RSODD�F. T�UUQRSOD 

X@Ba: Q�D�6	ON��@BU�X, X@Ba: `OWℎXT�OWℎX�@BU�X, - ik - 

X@Ba: �DD�EPU@		�@BU�X, - ik – 

X@B]: �@BU�X, (X@B], 399€): ℎ@	GEOP�, (X@B], 1250g) ∶ ℎ@	T�OWℎX, �RSODg�6X]: G��EQRSOD 

(X@B], �RSODg�6X]) ∶ ∀�RSODD�F. G��EQRSOD,X@Bl: �@BU�X, (X@Bl, 600€): ℎ@	GEOP�, X@Bl: ��6N�EXOBU� 
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X@B]: �6��D�6	ON��@BU�X, X@B]: `�I�EPU@		�@BU�X, - ik – 

X@Bl: �DD�EPU@		�@BU�X, �RSODg�6Xl: T�UUQRSOD, - ik – 

(X@Bl, �RSODg�6Xl): ∀�RSODD�F. T�UUQRSOD - ik -} 

A considerable amount of knowledge is implicitly revealed 

in the terminological knowledge base. In this case a lot of 

knowledge about the domain is available, but does not 

provide support for a comprehensible decision. For this 

reason, the capabilities of the knowledge base are extended to 

include the ability to depict individual preferences.  

2.3. Weighted Description Logic 

The weighted description logic (WDL) can be regarded as 

a generic framework, the so-called decision base [6]. We use 

an a priori preference relation over attributes (the so-called 

ontological classes). Thereby, an a posteriori preference 

relation over choices (called ontological individuals) can be 

derived. Formally, a utility function �  over n  (the set of 

attributes) is defined ( �: n → ℝ ). Additionally, a utility 

function u, which is defined over choices and uses logical 

intentions, extends the utility function U to the subset of 

choices [19]. Modelling attributes takes place in two steps:  

1. Each attribute is modelled by a concept. 

2. For every value of an attribute a new (sub) concept is 

introduced. 

For instance, if equipped is an attribute to be modeled, it is 

simply represented by the QRSODg�6X  concept (i.e. 

QRSODg�6X ∈ n). An equipment can be regarded as a value, 

as if it was a concept of its own. If “well equipped” is a value 

of the attribute equipped, the attribute set n  is simply 

extended by the concept T�UUQRSOD , as a sub-concept of 

QRSODg�6X. It should be noted that an axiom is introduced 

to guarantee disjointedness (e.g. G��EQRSOD ⊑

 ¬T�UUQRSOD ) and that this procedure results in a binary 

term vector for n, because an individual c (as a choice) is 

either a member of a specific attribute of the concept set n or 

not. 

A total preference relation (i.e. ≽n) over an ordered set of 

not necessarily atomic attributes n and a function �: n → ℝ 

that represents ≽  (i.e., �(qa) ≥  �(q])  if 

 qa ≽n  q]  for  qa, q] ∈ n ) is given. Then the function � 

assigns an a priori weight to each concept q ∈ n. Therefore, 

one can say, that “� makes the description logic weighted”. 

The utility of a concept q ∈ n  is denoted by �(q) . The 

following applies: The greater the utility of an attribute the 

more preferred it is.  

As mentioned above, a choice is an individual P ∈ �� . r 

denotes the finite set of choices. To determine a preference 

relation (a posteriori) over r (i.e. ≽r) which respects ≽n , a 

utility function S(P) ∈ ℝ  is introduced. S(P)  indicates the 

utility of a choice P relative to the attribute set n . Also, a 

utility function �  over attributes as an aggregator is 

introduced. For simplicity, the symbol ≽  is used for both 

choices and attributes when it is evident from the context.  

Within a consistent knowledge base s ≔ .>, ?0 , 

consisting of a >Box >  and an ?Box ? , the u-utility is a 

particular S  and is defined as Sv(P) ≔  ∑)�(q) | q ∈

n and s ⊨ c: q} and is referred to as the sigma utility of a 

choice P ∈ r . Sv triggers a preference relation over r  i.e., 

Sv(Pa) ≥ Sv(P]) iff Pa ≽ P] . Each choice that is logically 

entailed e.g. s ⊨ c: q corresponds to a set of attributes. Due 

to the criterion additivity, each selection P corresponds to a 

result. 

Putting things (DL, � and S) together it defines a generic 

zBox (so-called Utility Box) as a pair z ∶= (Sv , �) where � 

is a utility function over n and Sv is the utility function over 

r . Furthermore, a decision base is defined as a triple 

" = (s, r, z) , where r ⊆ ��  is the set of choices and 

z = (S, �)  is an z Box. Note:  s  provides assertional 

information about the choices and terminological information 

about the agent’s ability to reason over choices.  

Now we expand our tablet example with various utility 

boxes (z�) and utility functions (S�,v) from two experts: 

For expert 1 za = {(�6��D�6	ON��@BU�X, 50), 

(�DD�E�U@		�@BU�X, 40), (`OWℎXT�OWℎX�@BU�X, 40)}, 

Sa,v(X@Ba) = 40 + 40 = 80, Sa,v(X@B]) = 50 and 

Sa,v(X@Bl) = 40. It follows that X@Ba ≻ X@B] ≻ X@Bl 

For the expert 2, however, 

z] = {(�6��D�6	ON��@BU�X, 60), 

(�DD�E�U@		�@BU�X, 20), (`OWℎXT�OWℎX�@BU�X, 10)}, 

S],v(X@Ba) = 20 + 10 = 30, S],v(X@B]) = 60 and 

S],v(X@Bl) = 20. It implies that X@B] ≻ X@Ba ≻ X@Bl 

Within this decision base, an expert with the utility box za 

would classify X@Ba  as first choice, whereas an expert with 

another utility box z]  would prefer X@B] . At X@Bl  two 

different problems occur. One of them is that for this tablet a 

weight (in the sense of mass, not weighting of a concept 

according to WDL sense) is not known. Therefore, the 

reasoning fails if an instance check for this tablet is 

performed on the concept LightWeightTablet. For this reason, 

calculating the utility value is treated as if it were not an 

instance of LightWeightTablet. But the membership of this 

concept is unknown, and it cannot be reasoned that the 

instance does not belong to the concept LightWeightTablet. 

The other problem is that the tablet at a price of 600€ is 

neither inexpensive nor expensive (InexpensiveTablet resp. 

ExpensiveTablet). Although the price is well-known, the 

utility function treats this tablet just like expensive ones, 

which is not quite reasonable in this scenario. In order to 

eliminate this problem, the knowledge base is extended by 

fuzzy description logic and then combined with the decision 

base presented in the following chapters. 

2.4. Fuzzy Description Logic 

In order to deal with the ambiguity of the underlying 

domain, it is necessary to clarify where this uncertainty 

comes from. Either the uncertainty is due to a probabilistic 

cause or to vagueness. If the first situation occurs, then a 

statement is either “true” or “false” to a possibility (in the 

sense of likelihood), whereas in the second situation a 
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statement is either “true” or “false” to some degree (in the 

sense of reaching a graded level) [20].  

In the context of the choice of tablets mentioned above, the 

underlying ambiguity arises from vagueness. In order to 

model vague knowledge description logic is enriched with 

fuzzy logic, which enables the reflection of a degree of 

membership to a certain concept. A fuzzy set is defined by its 

characteristics, the so-called membership function [21].  

Let q be a non-empty set of individuals, then a class � in 

q is characterized by its membership function ��: q → �0,1� 

and assigns to each � ∈ q a real number within the interval 

[0,1]. This value represents the degree of which it belongs to 

�. The membership function defined for fuzzy sets has some 

essential properties which appear natural [22]: 

∀� ∈ q: � = ∅ iff ��(�) = 0 

∀� ∈ q: �� = q\�: ���(�) = 1 − ��(�) 

∀� ∈ q: � ⊆ �: ��(�) ≤ ��(�)  

∀� ∈ q: � ∪ �: ��∪�(�) = max (��(�), ��(�))  

∀� ∈ q: � ∩ �: ��∩�(�) = min (��(�), ��(�))  

To enhance the possibilities of fuzzy sets, algebraic 

operations can also be defined. There are plenty of 

definitions e.g. Łukasiewicz logic, Gödel logic [23]. In this 

work the standard fuzzy logic (SFL) is used, but all others 

can also be applied. Some definitions can be found in table 2.  

This toolset of fuzzy set definitions and algebraic operators 

can now be applied to description logics to reflect ambiguity 

and vagueness in knowledge bases. For example, an 

individual that is only an instance of a concept to a certain 

degree can be modelled suitably. 

Table 2. Definitions of algebraic operations, 

Algebraic operator SFL 

@⨂B / @⨁B min (@, B) / max (@, B) 

@ ⇒ B / ⊖ @ max(1 − @, B) / 1 − @ 

To formally quote this fuzziness of description logic 

axioms, we use the syntax presented in Straccia [7]. The 

conceptional syntax of fuzzy description logics is the same as 

for the description logics defined above (see chapter 2.2). 

The semantics, however, reflects the fuzzy logic. Therefore, a 

fuzzy interpretation is a pair ℐ = (Δℐ ,∙ℐ) consisting of a non-

empty set called domain and a fuzzy interpretation function. 

This function maps individuals as usual and concepts into 

membership functions Δℐ → [0,1]. Accordingly, the roles are 

mapped to Δℐ × Δℐ → [0,1] . Consequently r ℐ  is the 

membership function of the fuzzy set �. Hence, a concept is 

interpreted as fuzzy set. 

Example 

A specific tablet is an instance of the concept Convertible 

only to a certain degree depending on its features. We 

therefore extend the description logic and allow this degree 

to be captured as a fuzzy value and write 
.X@Bl: ��6N�EX@BU�, 0.80 . This means that X@Bl  is at least 

one instance of the concept ��6N�EX@BU� with the degree of 

0.8. Analogously, ��6N�EX@BU� ℐ(X@Bl) returns the minimal 

degree that X@Bl  is a convertible tablet under the 

interpretation ℐ.  

The properties of fuzzy sets and algebraic operators are 

now applied to interpretations of SROIQ and lead to the 

following example rules for all F ∈ Δℐ  [24]: 

Table 3. Fuzzy semantics (non-exhaustive). 

Syntax Semantics 

� ⊓ " (� ⊓ ")ℐ(F) = min{�ℐ(F), "ℐ(F)} 

¬� (¬�)ℐ(F) = 1 − �ℐ(F) 

� ⊑ " (� ⊑ ")ℐ = inf�∈�ℐ�ℐ(F) ⇒ "ℐ(F) 

∃'. � (∃'. �)ℐ(@) = sup�∈∆ℐ {min ('ℐ(@, B), �ℐ(B))} 

Example 

Let s be the knowledge base above, but now the concept 

`OWℎXT�OWℎX�@BU�X is no longer strictly defined according 

to classic DL, but intuitively with the help of fuzzy DL. 

Within the > Box, the row ∃ℎ@	T�OWℎX. ≤_ZZ[⊑
`OWℎXT�OWℎX�@BU�X will be replaced by the following two 

constructs: 

.�∃ℎ@	T�OWℎX.�_ZZ[⊓ ∃ℎ@	T�OWℎX.�aaZZ[ �
⊑ `OWℎXT�OWℎX�@BU�X, 0.60 

.∃ℎ@	T�OWℎX.�_ZZ[ ⊑ `OWℎXT�OWℎX�@BU�X, 10 

indicating that every tablet with a weight of less than 1100g 

should still be considered a light tablet to a certain degree 

(here 0.6). For X@Bl the exact weight is not known, but the 

related information varies between 900g and 1100g with 

strong tendencies to the upper threshold. Therefore the ?Box 

is adjusted accordingly: 

.X@Bl: ∃ℎ@	T�OWℎX.�_ZZ[ , 0.50 and .X@Bl: ∃ℎ@	T�OWℎX.�aaZZ[ , 0.90. The >Box reveals X@Bl: ∃ℎ@	T�OWℎX.�_ZZ[⊓
X@Bl: ∃ℎ@	T�OWℎX.�aaZZ[ = min�X@Bl: ∃ℎ@	T�OWℎX.�_ZZ[ , X@Bl: ∃ℎ@	T�OWℎX.�aaZZ[ � = min{0.5, 0.9} = 0.5 

and X@Bl  is therefore a `OWℎXT�OWℎX�@BU�X  with the 

minimal degree of max{1 − 0.5,0.6} = 0.6.  

3. Weighted Fuzzy Description Logic 

For the weighted fuzzy description logic, the background 

knowledge base s = (>, ?)  will also be able to capture 

vague knowledge and assertions formally referred to as 

s ≈ (>, ?). This knowledge base is then extended by the 

set of choices r and the utility box z steering the decision 

making. The advantage of this framework is that these 

weights can be articulated independently and do not need to 

be compared against each other like in a more 

straightforward approach [25]. 

Definition 

A triple C ≈ (s, r, z) , where s  is a fuzzy knowledge 

base, r a set of choices and z is a utility box called a fuzzy 

decision base.  

Note: Entities of the zBoxes are concepts that are relevant 

to the decision-making process, including their specific 
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individual weights. After the reasoning for each of the 

existing choices, the instance check completes and reveals 

whether a choice belongs to a specific concept or not. 

Suppose a choice P: �  belongs to a concept, this could be 

vague even within the fuzzy description logics. Hence, it 

leads to constructs like .P: �, 60 with 6 ∈ �0,1�.  
Definition 

Let .P: �, 60  be a fuzzy assertion and (�, I)  a weighted 

attribute, then a fuzzy utility value of c respective to U is 

S�∼v(P: �) ≝ I ∙ 6 

If the assertion is not fuzzy, then 6 is simply set to 1. If the 

instance P  belongs to the complement of �  with a 

membership degree of 1, then the fuzzy utility value for P on 

this attribute is 0 (as 6 is then 0). 

Example 

In case for X@Bl , the calculated respective reasoned 

membership degree for a lightweight tablet is 0.6, formally 

written .X@Bl: `OWℎXT�OWℎX�@BU�, 0.60  and expert �a 

defines for this attribute a weight of 40, formally written as 

(`OWℎXT�OWℎX�@BU�X, 40) , then S�∼v(X@Bl) = 24 . The 

individual weight is a bit more than half of the initially 

defined one, since the degree of membership of this tablet is 

only 0.6. As the utility function is additive, the utility 

measure for a choice is the sum of all relevant attributes. 

Definition 

Let C ≈ (s, r, z) be a fuzzy decision base with a utility 

box z of the cardinality   = |z|, then the zBox fuzzy utility 

value of c is S�∼z,v ≝ ∑ S�∼v(¡: ��)¢
�£a . 

By calculating the z Box fuzzy utility values of each 

choice c a total ordering of the set r is naturally given. The 

ideal solution is therefore the choice with the highest fuzzy 

utility value relative to the zBox. 

Definition 

Let C ≈ (s, r, z) be a fuzzy decision base with a utility 

box z of the cardinality   = |z|, then the ideal fuzzy choice 

is ¡�∼¤ ≝ arg g@�¡¦r(∑ S�∼v(¡: ��)¢
�£a ). 

Example 

For an expert with the utility box �a  the summarized 

utility value for X@Bl  is ∑ S�∼v(¡: ��)¢
�£a = 24 + 40 = 64 . 

The ranking of choices for this expert changes to X@Ba ≻

X@Bl ≻ X@B], which means that X@Bl is preferred to X@B]. In 

this scenario, the problem remains that the price of the tablet 

is neither expensive nor inexpensive, but unknown. 

Therefore, it is indispensable to design a consistent 

respective complete fuzzy decision base by ensuring that 

each attribute listed in the zBox is correct and decidable in 

the knowledge base.  

Definition 

A fuzzy decision base C ≈ (s, r, z) is called complete if 

for every relevant attribute out of the z Box � ∈ z a fuzzy 

value for every P ∈ r  is deducible: ∀ � ∈ z, ∀P ∈ r ∃6 ∈
[0,1]: .P: �, 60. Thus the fundamentals are defined to make a 

reasonable decision in the above scenario. 

To complete the fuzzy decision base of the example above, 

X@Bl  requires a fuzzy value for the attribute 

“�6��D�6	ON��@BU�X” and X@B] for “`OWℎXT�OWℎX�@BU�X”. 

Therefore the >Box is extended to reveal fuzzy values also 

for weights above 1100g and prices in between 500€ and 

900€. The following expressions are added to the >Box: 

.¬∃ℎ@	T�OWℎX.�aaZZ[ ⊑ `OWℎXT�OWℎX�@BU�X, 00 

.(∃ℎ@	GEOP�.§^ZZ€⊓ ∃ℎ@	GEOP�.¨_ZZ€ )
⊑ �6��D�6	ON��@BU�X, 0.50 

.(∃ℎ@	GEOP�.§^ZZ€⊓ ∃ℎ@	GEOP�.¨_ZZ€ )
⊑ Q�D�6	ON��@BU�X, 0.50 

The first line indicates that tablets with a weight above 

1100g do not belong to the concept `OWℎXT�OWℎX�@BU�X at 

all. The fuzzy values of the second and third line represent 

the membership degrees of those tablets which have a price 

within this interval and is set manually to 0.5 as arithmetic 

mean between the two categorizations inexpensive and 

expensive. Thus, X@Bl  is a member of the concept 

Inexpensive with a degree of 0.5 and a member of Expensive 

with the same degree.  

With standard fuzzy logic the fuzzy value of a concept’s 

complement is: (¬�)ℐ(F) = 1 − �ℐ(F) , which entails the 

following implicit knowledge:  

.�6��D�6	ON��@BU�X ⊓ ∃ℎ@	GEOP�.�_ZZ€ , 00 

For example, if X@Ba  has the price of 999€, then the 

following applies: 

.X@Ba: Q�D�6	ON��@BU�X, 10 and 

.X@Ba: ¬Q�D�6	ON��@BU�X, 00 

By means of this complete decision base the above 

decision can be derived properly. The utility values for X@Bl 

within za and z] are: 

S�∼a,v(X@Bl) = 0.5 ∙ 50 + 40 + 0.6 ∙ 40 = 89 

S�∼],v(X@Bl) = 0.5 ∙ 60 + 20 + 0.6 ∙ 10 = 56 

For an expert with the utility box �a X@Bl is his or her first 

choice, while the other expert still chooses X@B].  

4. Conclusion 

By extending the fuzzy logic by a decision base, a model is 

defined, that represents reality much better. Because of the 

uncertainty around X@Bl a first calculation in a conventional 

decision base revealed a distorted result. Incorporating the 

vague knowledge existing in this domain, the expert would 

have chosen X@Bl  instead of X@Ba . The strength of this 

framework is that vague assertions are properly deliberated 

together with individual preferences. 

It becomes obvious how the weighting influences the 

decision. As the first utility box has almost balanced weights, 

the second one has a strong tendency towards inexpensive 

tablets. Using this zBox, the first choice is still X@B]. But the 

second choice is now X@Bl and not X@Ba. Both tablets were 

initially not included in the concept �6��D�6	ON��@BU�X, but 

with the help of fuzzy logic the strong preference for 

inexpensive tablets causes X@Bl X@Ba to pass. 

Summarized, complete fuzzy decision bases offer a strong 

opportunity to model real world situations which need to 
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respect ambiguity and individual preferences while 

supporting a comprehensible decision-making process. 

Further research needs to reveal supporting algorithms to 

detect and locate incompleteness to support the creation of 

complete fuzzy decision bases. Overall, creating these 

underlying ontologies is time-consuming and a non-trivial, 

manual process. To facilitate this, new approaches with deep 

learning algorithms have arisen [26]. The use of such 

techniques is another milestone on the way to a fully 

automated decision-making process. 
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